GETTING TO KNOW YOUR Stratoliner
A COCKPIT GUIDE AND FLYING NOTES FOR THE BOEING B307 STRATOLINER
The Boeing B307 Stratoliner is a four-engined long-range passenger airliner that was produced by Boeing. The Stratoliner was designed to fly at high altitudes and was capable of carrying up to 33 passengers and 5 crew members. It was the first commercial airliner to feature a pressurized cabin, which provided a comfortable flying experience for passengers.

The Stratoliner had a pressurized cabin that allowed passengers to fly at high altitudes without experiencing the effects of high altitude. The Stratoliner's pressurized cabin was able to maintain a pressure equivalent to 8,000 feet, which allowed passengers to fly at an equivalent altitude of 23,000 feet. This made the Stratoliner the world's first commercial airliner to fly at high altitudes.

The Stratoliner was powered by four radial engines, which were able to provide the aircraft with the necessary thrust to fly at high altitudes. The engines were capable of developing up to 1,100 horsepower, which was enough to power the Stratoliner through the high-altitude environment.

The Stratoliner was designed to be a luxury airliner, and it was equipped with a variety of amenities to provide passengers with a comfortable flying experience. The Stratoliner had a galley, a lavatory, and a powder room, which made it the first commercial airliner to feature a dedicated flight attendant.

The Stratoliner's pressurized cabin was equipped with ventilation systems, which helped to provide a comfortable flying environment for passengers. The Stratoliner's ventilation systems were responsible for adjusting the supercharged pressure heating and ventilation, which helped to maintain a comfortable flying environment for passengers.

The Stratoliner was also equipped with a pressurized water system, which was responsible for providing passengers with a constant supply of water. The Stratoliner's pressurized water system was capable of providing passengers with a constant supply of water, which was necessary for maintaining a comfortable flying environment.

The Stratoliner was a very successful aircraft, and it set new levels of luxury and convenience for passengers. The Stratoliner's success was due to its ability to fly at high altitudes, its pressurized cabin, and its amenities, which provided passengers with a comfortable flying experience.
1. GNS suite switcher
2. Avionics Master Switch
3. OMI Marker unit
4. Transponder
5. Autopilot
6. NAV1 Radial Indicator
7. ADF(NDB) Indicator
8. NAV2 RMI
9. NAV1 RMI
10. Fuel Truck (toggle)
11. Services (Toggle)
12. Windshield wiper switches
13. Ignition Magnetos
14. Propeller Feathering Buttons
15. Main U/C Warning lights
16. Tail Wheel Warning Lights
17. Landing Gear Switch
18. Flaps Position Indicator
19. Flaps Switch
20. Engine Starter Panel
21. Propeller Throttle Controls
22. Landing Light Switches
23. Cabin Lighting Rheostate

IMPORTANT!!

This panel has a switch (1) which will allow you to toggle between the standard navigation instruments and a GNS suite.

To use the navigation systems, either traditional or GNS, you MUST switch ON the Avionics Switch (2)
INSTRUMENT PANELS

The main pilots’ instrument panel contains all the necessary gauges required to fly the aircraft, including instruments for engine management from the pilots’ seats. These instruments are repeated on the engineer’s panel where, in real life, the engineer would be responsible for engine management during flight.

MAIN INSTRUMENT PANEL

FOR A BETTER VIEW

THE LARGE CONTROL WHEELS AND COLUMN TEND TO MASK SOME OF THE CRITICAL INSTRUMENTS. TO REMOVE THE YOKES FOR BETTER VISIBILITY, CLICK ON THE SMALL PILOTS’ PANEL LIGHTS MOUNTED ON THE FORWARD PART OF EACH SIDE CONSOLE.

INSTRUMENT PANELS

1. Heading Compass
2. Altimeter
3. Gyro compass
4. Artificial Horizon Indicator
5. Anemometer Indicator
6. Turn/Slip Indicator
7. Vertical Speed Indicator
8. Radio Compass
9. Critical Height Warning Light
10. Manifold Pressure
11. Tachometers
12. Sperry Gyro-Pilot
13. Oil Pressure & Warning Lights
14. Oil Temp. (Engines 1 & 2)
15. Cylinder Temp. (Engines 1 & 2)
16. Carb. Temp. (Engines 1 & 2)
17. Oil Temp. (Engines 3 & 4)
18. Cylinder Temp. (Engines 3 & 4)
19. Carb. Temp. (Engines 3 & 4)
20. Fuel Press. & Warning Lights
21. Outside Air Temperature
22. Oil Fuel Tank Contents (6)
23. Chronometer
1. Throttles
2. Throttles (co-pilot, slave)
3. Propeller Controls
4. Mixture Controls
5. Carburettor Heat Controls
6. Manifold pressure selectors (INOP)
7. Tailwheel Lock
8. Throttle Lever Lock
9. Emergency Autopilot Switch
10. Elevator Trim Control
11. Tail Wheel Lock
12. Radio Suite
13. ADF Receiver
14. Rudder Trim Control
15. Aileron Trim Control
16. Ground/Flight Power Control
17. Wing De-ice Control
18. Fuel Dump Valves
19. Engine Fire Control Panel

FUEL DUMP PROCEDURES

LIFT THE COVER LID AND YOU WILL FIND TWO LEVERS. ONE FOR THE LEFT WING AND ONE FOR THE RIGHT. PULL UP TO JET TENSITY FUEL.

ENGINE FIRE CONTROL

LIFT THE COVER LID AND YOU WILL FIND A SELECTOR LEVER TO SELECT EACH ENGINE. AFT OF THIS IS A LARGE RED EXTINUGISHER LEVER WHICH YOU PULL UP TO OPERATE THE EXTINUGISHER.

AT THE BACK OF THE CONTROL BOX ARE TWO SMALLER LEVERS. THESE ARE SUPPLY CUT-OFFS FOR FUEL AND OIL. YOU MUST TURN THESE OFF AND MAKE SURE THAT THE ENGINE IS CUT BEFORE USING THE EXTINUGISHER.

ENGINEER'S PANEL

1. Engine Fuel Selectors x 4
2. Inverter Switch
3. Generator Ammeters
4. Cabin Pressure Control Sub-Panel
5. Suction
6. Fuel Tank Contents x 6
7. EGT
8. Carburettor Air Temperatures
9. Fuel Pressures
10. Oil Temperatures
11. Oil Pressures
12. Hydraulic Pressures
13. Cabin Pressure Levers (INOP)
14. INOP

NOTE

QUITE A FEW OF THE INSTRUMENTS ON THE ENGINEER'S PANEL ARE DUPLICATES OF THOSE FOUND ON THE MAIN PILOTS' PANEL.
The upper panel has the following navigation instruments:

- COM1 (Coastal Marine Radio) for general VHF radio
- NAV1 RMI (Remote Magnetic Indicator) and NAV1 direction indicator
- NAV2 RMI
- ADF (Automatic Direction Finder) direction indicator
- VOR (VHF Omnidirectional Range) receiver
- DME (Distance Measuring Equipment) unit
- GS (Ground Slope) indicator
- RMI (Remote Magnetic Indicator) and VOR direction indicator
- GS (Ground Slope) indicator
- VORTAC (VHF Omnidirectional Range and Tacan) receiver

Below these four head units are the ADF and VOR receivers, COM1 and COM2. The lower head units are receivers for NAV1 and NAV2 receivers, and the upper head units operate as a VOR receiver with individual digit knobs. Once tuned to a correct NDB, the needle pointer of the receiver will display the desired position. At the rear of the pedestal are four sperry gyropilot head units and an ADF receiver for NDB and VOR.

To start a new turn, first rotate the rudder knob counterclockwise until heading bug scale value coincides with the wanted heading. Then rotate the aileron knob (max 30 deg) by rotating (1) Caging the Attitude gauge with the attitude cage knob, (2) Check that the green light is ON to confirm the unit selected, (3) If a climb or descent is desired, slowly rotate the elevator knob (max 30 deg) to speed up the turn (centered for right bank). (4) The gyropilot will command the rudder for a shallow turn as it was commanded before. The pitch bug (5) is active. The aircraft will start turning towards the selected heading due to the gyropilot inputs to rudder and aileron. Once the desired heading is obtained, it will be maintained by keeping the heading bug level. If a shallow turn is desired, slowly rotate the elevator knob (max 20 deg propped up) and the pitch bug will be maintained with the VS gauge readout (max 35 deg). Once the desired heading is obtained, it will be maintained by keeping the heading bug level. If a shallow turn is desired, slowly rotate the elevator knob (max 20 deg propped up) and the pitch bug will be maintained with the VS gauge readout (max 35 deg). The pitch bug will be maintained with the VS gauge readout.

Sperry gyropilot

It is essential to observe that this unit is assigned to the navigator and is not meant to control the airplane in critical situations (for example, landing). It should be remembered that this unit is not designed as a navigation aid and was never meant to replace conventional navigational instruments. It is not the intention of this guide to teach navigation or how to use navigation instruments. There are many guides readily available on the web that can be used to learn about navigation and its instruments.

PLEASE NOTE

NOTE: There are many radio suites available on the market. The upper panel has the following navigation instruments: 1. COM1 (Coastal Marine Radio) for general VHF radio, 2. NAV1 RMI (Remote Magnetic Indicator) and NAV1 direction indicator, 3. NAV2 RMI, 4. ADF (Automatic Direction Finder) direction indicator, 5. VOR (VHF Omnidirectional Range) receiver, 6. DME (Distance Measuring Equipment) unit, 7. GS (Ground Slope) indicator, 8. VORTAC (VHF Omnidirectional Range and Tacan) receiver.

NOTE: The servos controls (speed valves) are not available in this simulation. Note the servos controls (speed valves) are not available in this simulation.

Please note that the servos controls (speed valves) are not available in this simulation.

NOTE: The servos controls (speed valves) are not available in this simulation. Please note that the servos controls (speed valves) are not available in this simulation.

Gyropilot for the technically minded

Within the simulator, you bank and navigate. These results are obtained with a bank angle between 15 to 35 degrees. When using nose up to nose down (0 to 90 degrees), you should be manually reduced to correct heading approximations to stay in the middle of the heading bug. You will be required to make a training flight in turbulence. Please note that the servos controls (speed valves) are not available in this simulation.

NOTE: The servos controls (speed valves) are not available in this simulation. Please note that the servos controls (speed valves) are not available in this simulation.
The Boeing B307 Stratoliner is not a difficult aircraft to learn to fly, especially those who previously learned on prop plane. Once your training is complete, you will have learned the job. Narrow the focus, the Stratoliner and its controls. There are important controls such as fuel tank selectors, switches and controls foruating and other systems. You should be aware of these before your first flight.

The flight deck was the first to feature an electrically operated systems for the landing gear and flaps. The switches and controls for these can be found on the upper instrument panel. There are three fuel tanks in each wing. Fuel cannot be transferred from one wing to the other as each pump in each wing can supply fuel to either of that wing's engines. There are three fuel tanks in each wing. Fuel pressure in the GPF starting generator. This supplies enough power to run the electrically operated systems. Fuel pressure in the GPF starting generator. This supplies enough power to start the engines. Once running, the engine should fire and settle to an idle. The engine should fire and settle to an idle. The engine boost and Primer switches. These are arranged so that you can toggle on and off the engines in turn up to 1,500 R.P.M. Turn the magnetos OFF the flaps. Select FLIGHT with the GROUND/FLIGHT switch up or down for the desired engine. For each engine using the controls first on the tank valves and select the appropriate tanks for the desired engine.

For example, for engine 1, select MAIN and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

Accurate flying, the Stratoliner has a range of up to 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

With careful engine management and progress, the flight deck has a choice up to 1,500 R.P.M. Normal cruise speed is 222 M.P.H. (at 19,000 ft) climb at around 175 M.P.H. at 1,200 feet per minute. The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!

The engine preparation and start procedures was a similar system employed by the DC-3. This allowed for a certain amount of maneuvering. The big airliner will have a tendency to wander off the straight and narrow if you don't use the lock.

The Stratoliner has good manners on the ground, when the gear is retracted. The landing gear itself was designed in such a way that the main wheels could still support the aircraft on the ground, where the gear is in the lock. The Stratoliner has a fully-castoring tail wheel and UNLOCK the tail wheel. You have four power settings; and they are called cruise, climb, 1,300 miles. Comfortable cruising in the World's first pressurized airliner!
Checklists.

A fully interactive checklist is provided with the simulator package but we have also included a set of abbreviated checklists with this guide, for reference.

PRE-START

Parking Brake ON
Services Switch ON
Fuel Truck Switch ON
Ground/Flight Switch GROUND
Fuel Contents CHECKED
Landing gear switch DOWN 3 Greens
Navigation Lights ON
Beacon Light ON
Landing Lights OFF
Flap Switch OFF
Propeller Controls OFF
Fuel Tank Levers MAINS
Mixtures FULL RICH
Pitot Heat ON
Trims NEUTRAL
Altimeter SET
Autopilot OFF
Inverters ON

START

#1 Boost Pump ON (Check Pressure)
#1 Primer ON
#1 Starter ON wait 5 secs
Magneto BOTH
Boost Pump OFF
Primer OFF

Repeat for all engines
WARM - UP

Fuel Truck Switch ON
Services Switch ON
Ground/Flight Switch GROUND
Instruments CHECKED
Throttle (per engine) 1,500 R.P.M.
Mag-check OFF
Services Switch OFF
Door check CLOSED
Radios

Flaps UP
CRUISE

Flaps UP
Propeller Pitch Preset "CRUISE"
Mixtures AS REQUIRED
Throttles AS REQUIRED
AutoPilot Ac145 AS REQUIRED

TAXY

Tail-wheel lock OFF
Flaps OFF
Trimming NEUTRAL
Brakes

TAXY

Tail-wheel lock OFF
Flaps OFF
Trimming NEUTRAL
Brakes

APPROACH

Airspeed 140 M.P.H.
Flaps As required
Propeller Controls Max R.P.M.
Landing Gear DOWN 3 Greens
Tail-wheel lock ON

LANDING

Airspeed 100 M.P.H.
Flaps FULL
Throttles AS REQUIRED
Touchdown 90 M.P.H.

CLIMB

Airspeed 130 - 170 M.P.H.
Landing Gear UP No lights